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a b s t r a c t

In this paper, Laguerre filters and simple polynomials are used respectively as linear and nonlinear parts
of a Wiener structure. The obtained model structure is the so-called Wiener–Laguerre model. This model
is used to evaluate identification of a pH neutralization process. Then the model is used in a nonlinear
model predictive control framework based on the sequential quadratic programming (SQP) algorithm.
Various orders of Laguerre filters and nonlinear polynomials are tested, and the results are compared
for the validation of these models. Validation results for various orders suggest that in order to have a
good trade-off between simplicity of the model and its corresponding fitness, a second order nonlinear
polynomial along with two Laguerre filters may be selected. The fitness of this model according to variance

account for (VAF) criterion is 92.32%, which is completely acceptable for nonlinear model predictive
control applications. Then the identified Wiener–Laguerre model is used for nonlinear model predictive
control and the results are compared with model predictive control in which just Wiener model was
used for identification. It is shown that the use of the Wiener–Laguerre structure improves the quality of
modeling together with the rate of convergence of SQP in a reasonable time. Furthermore, these results
are also compared with the performance of a linear model predictive controller based on Laguerre model
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. Introduction

Model predictive control (MPC) is one of the most successful
ontrollers in process industries. MPC describes a class of com-
uter control algorithms that control the future behavior of a plant
hrough the use of an explicit process model [1]. Therefore, the core
f the MPC algorithm is a dynamic model. Until recently, indus-
rial applications of MPC have relied on linear dynamic models
ven though most processes are nonlinear. MPC based on linear
odels are acceptable when the process operates at a single set

oint and the primary use of the controller is the rejection of dis-
urbances. Many chemical processes, however, do not operate at a
ingle set point, and they are often required to operate at different
et points depending on the grade of the product to be produced.

ecause these processes make transitions over the nonlinearity of
he system, linear MPC often results in poor control performance.
o properly control these processes, a nonlinear model is needed in
he MPC algorithm. Process industries need predictive controllers
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tween linear and nonlinear systems.
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hat are low cost, easy to setup, and account for plant nonlinear-
ty as well as modeling uncertainties. Therefore, it is necessary to
btain a suitable nonlinear modeling technique that can be easily
sed in a nonlinear MPC framework.

Selection of a suitable structure of a nonlinear model to rep-
esent system dynamics is a crucial step in the development
f a nonlinear MPC (NMPC) scheme. A number of researchers
nd commercial companies have developed nonlinear models
sing a variety of technologies, including first-principle [2] and
mpirical approaches (i.e., nonlinear black-box models) [3–5]. The
rst-principle models are valid globally and can predict system
ynamics over the entire operating range. However, development
f a reliable first-principle model is a difficult and time-consuming
ask. On the other hand, the nonlinear black-box models have
ertain advantages over the first-principle models in terms of
evelopment time and efforts. Thus, from a practical viewpoint,
evelopment of an NMPC scheme based on a nonlinear black-box
odel is a more attractive choice.

In the development of a nonlinear black-box model, selection

f a suitable model structure that can capture nonlinear dynam-
cs over a wide operating range is not easy [1]. Different black-box

odel structures are nonlinear autoregressive with exogenous
nputs (NARX) models [3], Volterra series expansion models and

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
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lock oriented models (Hammerstein and Wiener structures) [6],
nd artificial neural networks (ANN) [5]. The determination of
odel order and model structure of a general NARX model (i.e.
hich terms are important and cannot be ignored) is a difficult

ask [1].
Volterra series models can be used to model a wide class of

onlinear systems. However, these models are non-parsimonious
n parameters. Su and McAvoy [5] showed that recurrent neural
etworks (RNN) are better suited for the development of NMPC
chemes. These models have output error structure and generate
etter long-range predictions than feed forward neural networks
FNN) that have been widely employed in process control applica-
ions. Development of RNN models is, however, considerably more
ifficult than development of FNN models. Therefore, it is neces-
ary to evolve a scheme for the development of a black-box model
n which the model structure can be selected relatively easily and
he resulting model is valid over a wide operating range.

Block oriented models such as Wiener models are well-known
n NMPC because of their simplicity and capability in modeling
onlinear systems, specially those that have linear dynamic and
onlinear output mapping. Wiener models have the capability of
pproximating, with arbitrary accuracy, any fading memory non-
inear time invariant system [7], and they have been successfully
sed to model several nonlinear systems encountered in the pro-
ess industry, such as distillation columns [8] and pH processes
9].

The linear convolution type models have been widely used in
PC implementation as these models do not require model order

nd time delay to be specified, and modeling of MIMO systems is
onsiderably easy using this representation [10]. A linear black-box
odeling technique that has received increasing attention in the

ast decade is the Laguerre Series approximation [11,12]. A Laguerre
eries model can be looked upon as a compact representation of
hese convolution type models.

Advantages of the linear Laguerre model can be summarized as
ollows:

1. Laguerre models do not need any explicit knowledge about sys-
tem time constant and time delay for model development.

. Unlike the convolution type models that require large number of
coefficients, a good approximation can be obtained with a small
number of model coefficients for asymptotically stable systems
due to orthogonality property of Laguerre polynomials.

. The estimates of the Laguerre coefficients are unbiased even for
a truncated series.

he use of such orthonormal filters in combination with a mem-
ryless nonlinear map referred to hereafter as a Wiener–Laguerre
odel was originally proposed by Wiener [13].
The Wiener–Laguerre model can be looked upon as a repre-

entation of the Volterra series model that is parsimonious in
arameters. Dumont et al. [14] has used a model of this type for
eveloping an adaptive predictive control scheme for controlling
ISO nonlinear systems. Sentoni et al. [15] used ANNs for construct-
ng a nonlinear state output map. Saha et al. [13] used quadratic
olynomials as well as ANN for constructing a nonlinear output
ap and used these models in nonlinear MPC formulations. The

utput of the Laguerre-polynomial model compares quite well with
he output of pH neutralization process in the training data set;
owever, this model completely fails to predict the plant behavior

hen the validation data set is used [13].

In this paper, a nonlinear pH process is identified and con-
rolled in its full range operating conditions that may happen in
eal applications. A Wiener–Laguerre structure is selected for iden-
ification with polynomial nonlinearity. The identification test is

a

y
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esigned based on a GMN [16] signal, which is recommended for
dentification of nonlinear processes in industries. In order to keep
he model as simple as possible, and also efficient for nonlinear

odel predictive control designs, different degrees of Laguerre
lter and polynomial orders are used and compared. These are
hosen, based on simulation results, in a trade-off between sim-
licity of the model and its corresponding fitness. Based on this
odel, a nonlinear model predictive controller is designed for a

roper operation of the pH process in different set points, and
he results are compared with a linear model predictive controller
ased on a linear Laguerre model. The performance of the controller
ased on the identified Wiener–Laguerre model shows that this
odel presents better prediction capabilities in comparison with

he identified linear Laguerre model. Moreover, the MPC based on
he Wiener–Laguerre model outperforms the MPC based on the

iener model, particularly when the system is operating away
rom the nominal operating conditions.

This paper is organized in four sections. After this intro-
uction, Laguerre filter networks and identification of nonlinear
iener–Laguerre models are discussed in Section 2. This section is

ollowed by the formulation of NMPC in Section 3, and a simulation
tudy on pH neutralization is discussed in Section 4. Conclusions
re summarized in Section 5.

. Identification of Wiener–Laguerre models

Let us consider a SISO linear system, modeled by a Laguerre filter
etwork and represented as follows:

ˆ(z) =
(

N∑
i=1

ciLi(z)

)
u(z) (1)

here

i(z) =
√

(1 − a2)Ts
(1 − az)i−1

(z − a)i
(2)

ere Li(z) denotes the ith order Laguerre filter, N the number of
aguerre filters used for model development, a (−1 < a < 1) the
aguerre filter parameter, Ts the sampling interval, ŷ(z) the model
utput, and u(z) is the manipulated input.

Defining the state vector as

(k) = [l1(k), l2(k), . . . , lN(k)]T (3)

here li(k) represents the output from ith order Laguerre filter at
th sampling instant to the input u(k), a discrete state-space realiza-
ion of the Laguerre filter network can be obtained as follows[12]:

(k + 1) = ˚(a)L(k) +� (a)u(k) (4)

here u(k) is the system input, ˚(a) is an N × N lower triangular
atrix defined by

(a)=

⎡
⎢⎢⎢⎣

a 0 0 0 0
(1 − a2) a 0 0 0

−a(1 − a2) (1 − a2) a 0 0
. . . . . . . . . . . . 0

(−1)NaN−2(1 − a2) (−1)N−1aN−3(1 − a2) . . . . . . a

⎤
⎥⎥⎥⎦ (5)

nd � (a) is an N dimensional vector as follows:

(a)=
[√

(1−a2)Ts,−a
√

(1−a2)Ts, . . . , (−a)N−1
√

(1−a2)Ts

]T
(6)
For the linear model given by (1), the output can be expressed
s the weighted sum of the states by

ˆ(k) = CT L(k) (7)
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here elements of C are Laguerre filter coefficients, that is

= [c1, c2, . . . , cN]T. (8)

For developing a Wiener–Laguerre SISO nonlinear model, a non-
inear state-output map can be constructed so that the model
utput is represented as

ˆ(k) = � [x(k)] (9)

here  (·): RN → R is a memoryless nonlinear function.
Here for simplicity of the model the nonlinear map  (·) is

elected as a polynomial function of the elements of state vec-
or. The resulting SISO symmetric Wiener–Laguerre model can be
epresented by

(k + 1) = ˚(a) L(k) +� (a)u(k) (10)

ˆ(k) = h0 +
N∑
i=1

hili(k) +
N∑
i=1

N∑
j=i
hijli(k)lj(k)

+· · · +
N∑
i=1

N∑
j=i
. . .

N∑
k=r

N∑
m=k

hij...kmli(k)lj(k) . . . lk(k)lm(k) (11)

The key step in developing the Laguerre part of this model is to
stimate the Laguerre filter parameter a, and select the number of
aguerre networks N. The step response data can be used to gener-
te a meaningful initial guess for the filter parameter a. If T is the
ystem time constant, the discrete pole of the Laguerre filter can be
btained as

= e−Ts/T (12)

We have a strong preference for a pre-chosen real pole (i.e.
aguerre filter parameter) rather than obtaining it by optimization
ince it improves the speed and accuracy of the estimation algo-
ithm. In exchange, this choice can lead to a slightly larger number
f Laguerre filters required to model, for instance, under-damped
econd order dynamics.

The number of Laguerre filters and Volterra kernels N was cho-
en so that the output of the system and that of the model were
est fitted according to the variance account for (VAF) criterion:

AF = max

{
1 − var{y− ŷ}

var{y} ,0

}
× 100% (13)

In (13) y = {yk}Ns
k=1 denotes the real output sequence, ŷ = {ŷk}Ns

k=1
enotes the model output sequence, and var{·} denotes the vari-
nce of a quasi-stationary signal.

From (11) the output can be written as

ˆ(k) = HTϕ(k) + ε(k) (14)

here ε(k) is the equation error and

= [h0, h1, . . . , hR]T. (15)

In (15), index R is calculated for a symmetric P-order Volterra
lter by

=
P∑
i=1

(
N + i− 1
i− 1

)
. (16)
Besides, the regression vector ϕ(k) is defined by

(k) = [1 l1, . . . , lN, l21 l1 l2, . . . , l
2
N, l

3
1 l1 l2 l3, . . . , l

3
N, . . . , l

M
N ]

T
. (17)

After determining the structure of the proposed model, identi-
cation is performed using the least squares criterion.

n
a
p
s

u
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. Nonlinear model predictive formulation

In a typical MPC formulation, an explicit dynamic model is used
t each sampling instant for predicting the future behavior of the
lant over a finite number of future time steps, say P, which is called
he prediction horizon. A set of M (called the control horizon) future

anipulated input moves, u(k/k), u(k + 1/k), . . ., u(k + M − 1/k), are
etermined by optimization with the objective of optimizing the
uture behavior of plant while taking into consideration the oper-
ting constraints.

Thus, given a sequence of future control moves, i.e., u(k/k),
(k + 1/k), . . ., u(k + M − 1/k), the P step ahead open loop output
rediction can be written as follows:

(k + j + 1
∣∣ k) = ˚(a)L(k + j

∣∣ k) +� (a)u(k + j
∣∣ k), j = 1, . . . , P − 1

(18)

ˆ(k + j
∣∣ k) = � [L(k + j

∣∣ k)] (19)

here

(k +M
∣∣ k) = . . . = u(k + P − 1

∣∣ k) = u(k +M − 1) (20)

In order to take into account the plant model mismatch and
nmeasured slightly varying disturbances, we assume that the dis-
repancy between the model output and the process output is due
o additive step disturbances in the output that persist over the
rediction horizon. Thus, similar to the linear dynamic matrix con-
rol scheme, a mismatch correction term is incorporated in the
rediction model as follows:

c(k + j
∣∣ k) = ŷ(k + j

∣∣ k) + d(k
∣∣ k), j = 1,2, . . . , P (21)

(k
∣∣ k) = y(k) − ŷ(k

∣∣ k − 1) (22)

here y(k) represents the measured plant output at the kth instant,
nd ŷ(k/k − 1) represents the model output at the kth instant using
nput sequence up to time k − 1. Although simplistic, this type of
nmeasured disturbance model approximates slowly varying dis-
urbances and provides robustness to modeling error [17].

Now, given the future set point trajectory {ysp(k + j/k); j = 1, 2, . . .,
} the controller design problem can be formulated as follows:

min
u(k/k)...u(k+M−1/k)

⎧⎨
⎩

P∑
j=1

∥∥E(k + j
∣∣ k)∥∥2

Q (j)
+

M∑
j=1

∥∥u(k + j
∣∣ k)∥∥2

R(j)

+
M∑
j=1

∥∥�u(k + j
∣∣ k)∥∥2

S(j)

⎫⎬
⎭ (23)

ubject to

L ≤ u(k + j
∣∣ k) ≤ uu, j = 1, . . . ,M − 1. (24)

here

(k + j
∣∣ k) = ysp(k + j

∣∣ k) − yc(k + j
∣∣ k) (25)

u(k + j
∣∣ k) = u(k + j

∣∣ k) − u(k + j − 1
∣∣ k) (26)

In (23), Q(j), R(j) and S(j) are positive semi-definite diagonal
eighting matrices, and ||x||z =

√
xTZx denotes the weighted 2-

orm of vector x. The weighting matrices Q(j), R(j) and S(j), as well

s the prediction horizon P and the control horizon M, are design
arameters that must be tuned to provide the controller with a
atisfactory performance.

The resulting nonlinear programming problem can be solved
sing any standard optimization technique such as successive
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Table 1
Nominal operating conditions

u3 = 16.60 ml/s u2 = 0.55 ml/s
u1 = 15.55 ml/s V = 2900 ml
Wa1 = −3.05 × 10−3 mol Wa2 = −3 × 10−2 mol
Wa3 = 3 × 10−3 mol Wa = −4.32 × 10−4 mol
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Fig. 1. Schematic representation of the pH neutralization process [18].

uadratic programming (SQP). The controller is implemented in
moving horizon framework, i.e., only u(k/k) is implemented at

ach sampling instant, and the optimization is repeated at each
ampling instant based on the updated information from the plant.
n this work, the constrained optimization problem (23), resulting
he optimal input u(k/k) at every sampling instant, is solved using
fmincon” function in MATLAB optimization toolbox.

. Simulation results

In this section, the proposed nonlinear modeling and predic-
ive control are evaluated in simulation studies for the physical
onlinear model of a UCSB pH neutralization process [18].
.1. pH neutralization process [18]

The considered pH neutralization process consists of an acid
HNO3) stream, a base (NaOH) stream, and a buffer (NaHCO3)

p

h

Fig. 2. Step responses
b1 = 5 × 10 mol Wb2 = 3 × 10 mol
b3 = 0 mol Wb = 5.28 × 10−4 mol

k1 = 6.35 pk2 = 10.25
= 7.0

tream that are mixed in a constant-volume (V) stirring tank. The
rocess is schematically depicted in Fig. 1 [18].

The inputs to the system are the base (volumetric) flow rate (u1),
he buffer flow rate (u2), and the acid flow rate (u3), while the out-
ut (y) is the pH of the effluent solution. The acid flow rate (u3),
s well as the volume (V) of the tank are assumed to be constant.
sually, the objective is to control the pH of the effluent solution
y manipulating the base flow rate, despite the variations of the
nmeasured buffer flow rate, which can be considered as unmea-
ured disturbance.

The model is highly nonlinear due to the implicit output equa-
ion, known as the titration curve given in (33). The dynamic model
or the reaction invariants of the effluent solution (Wa, Wb) in state-
pace form is given by

˙ = f (x) + g(x)u1 + p(x)u2 (27)

(x, y) = 0 (28)

�=[x1, x2]T = [Wa,Wb]T (29)

(x) =
[
u3

V
(Wa3 − x1),

u3

V
(Wb3 − x2)

]T
(30)

(x) =
[

1
V

(Wa1 − x1),
1
V

(Wb1 − x2)
]T

(31)
(x) =
[

1
V

(Wa2 − x1),
1
V

(Wb2 − x2)
]T

(32)

(x, y) = x1 + 10y−14 − 10−y + x2
1 + 2 × 10y−pk2

1 + 10pk1−y + 10y−pk2
(33)

of pH process.
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ere, parameters pk1 and pk2 are the first and second disassoci-
tion constants of the weak acid H2CO3. The nominal operating
onditions of the system are given in Table 1 for the sake of com-
leteness.

.2. Pre-test and identification test design

In order to develop a Laguerre model we should guess the filter
arameter ‘a’ at first. Therefore, we need to obtain a rough estimate
f dominant process time constants through step tests. In a step
est, the process is operating in open-loop without the model-based
ontroller, each input is stepped separately, and step responses are
ecorded. The maximum step size can be determined according to
rocess operation experience, and the step length should be longer

han the settling time of the process. Step tests of pH neutraliza-
ion process for one step up and one-step down with different step
izes are shown in Fig. 2. As it is clear from this figure, pH neutraliza-
ion process as a nonlinear system shows different time constants
etween 100 and 160 s for step sizes up to ±10%.

a
d
p
c

Fig. 4. GMN te
t signal.

Generalized binary noise (GBN) [16] around the nominal value
f the base flow rate is used as the exciting signal for identification
f the linear Laguerre model. Here, linear identification is carried
ut around ±5% of the base flow rate (u1 = 15.55 ml/s) and switching
ime is calculated as

sw = Ts

3
(34)

here

s = 0.98Tsettling (35)

nd Tsettling is the settling time of the system which is 160 s here
ccording to the step response of ±5%. The GBN signal designed for
dentification of linear model is shown in Fig. 3.
Traditionally, pseudo-random binary sequences (PRBS) are used
s the inputs to a system in order to produce representative sets of
ata to be analyzed. In theory, a PRBS excites the range of dynamics
resent in a system so that a dynamic model can be produced which
ontains these dynamics. This is not sufficient, however, for fitting

st signal.
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Table 2
Comparison of identified linear models for different orders of Laguerre filters (noisy
data)

N = 1 N = 2 N = 3 N = 4 N = 5

VAF 87.85 94.32 95.12 95.68 96.16

N = 6 N = 7 N = 8 N = 9 N = 10

VAF 96.78 97.07 97.24 97.26 97.35
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Wiener model. Since these models have nonlinear gains, an input
ignal must be used which also demonstrates the response of the
ystem to a range of amplitude changes. A signal which satisfies this
riterion is a GMN or a modified PRBS signal which, in addition to
andom frequency, also exhibits random amplitude changes. Gen-
ralized multi level noise (GMN) is a multilevel generalization of
BN [16]. Here a GMN is used as a test signal for the identification
f a Wiener–Laguerre model. The switching time is designed as for
he GBN test signal. Amplitude distribution is chosen so that it has
0 levels around the nominal value of the base flow rate to cover
he whole operating region (between 0 and 30). These levels play
n important role in the identification of Wiener–Laguerre model.
ig. 4 shows the GMN test signal.

.3. Linear identification

The nonlinear analytical model (27) and (28) of the process is
sed to generate input–output data for the identification of a linear
aguerre model and also a Wiener–Laguerre model of the process.

At first, a linear Laguerre model is considered, and a gener-
lized binary noise around the nominal value of the base flow
ate (Fig. 3) is used as the exciting signal for identification of the
inear Laguerre model. Buffer flow rate is kept constant at its nom-
nal value (0.55 ml/s), and the acid flow rate is kept constant at
6.60 ml/s. The output of the system was corrupted with an addi-
ive Gaussian white noise with zero mean and standard deviation
= 0.001 (S/N ratio = 10), in order to simulate a more realistic situ-

tion when measurement noise is present. The input–output data
re plotted in Fig. 5. Output data has 6000 samples and is gathered
ith 10-s sampling time. The first 4500 samples are used for iden-

ification of the model and the rest of 1500 samples for validation
urpose. Different orders of linear Laguerre filters are tested and
he best one is selected according to the VAF criterion. Results are
ummarized in Table 2 [19].

It shows that when N increases, the fitness of the identified
odel increases too. However, only increasing N from N = 1 up to
improved the performance of the MPC controller, and this per-

ormance almost saturated for N > 2. Therefore N = 2 was chosen in

trade-off between compactness of the identified model and its

orresponding fitness.
The result of validation for the estimated Laguerre model using

alidation data is shown in Fig. 6. The fitting is 94.32% according
o the VAF criteria. Fig. 6 shows that a linear Laguerre model can

Fig. 5. Input–output data for linear identification.
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ig. 6. True and estimated output for linear Laguerre model (validation data).

apture the dynamic of the process but it cannot model its nonlinear
ain. So adding a nonlinear mapping as the nonlinear gain seems
o be necessary to improve the model accuracy.

.4. Nonlinear identification

In this case the excitement signal was a generalized multilevel
oise (GMN) designed in Section 4.2. Again, buffer and acid flow rate
ere fixed at their nominal values. In order to simulate a more real-

stic situation of having measurement noise, a Gaussian white noise
ith zero mean and standard deviation � = 0.001 (S/N ratio = 10)
as added to the output of the system. The input–output data used

or nonlinear identification are shown in Fig. 7. Output data has
000 samples and are gathered with 10-s sampling time. Differ-
nt orders of nonlinear mapping polynomial (P) and Laguerre filter
N) were tested and the results are summarized in Table 3. Accord-
ng to Table 3, for a simple choice of P = 2, the highest VAF value is
btained for N = 2. In this case, while keeping the model simple, we

et enough accuracy for designing a nonlinear controller based on
his model.

The result of validation for the estimated Wiener–Laguerre
odel is depicted in Fig. 8. The fitting according to the VAF cri-

eria is 92.32%. When compared to the Laguerre model in Fig. 6, the

able 3
omparison of identified Wiener–Laguerre model for various orders of polynomial
P) and Laguerre filters (N)

N = 1 N = 2 N = 3 N = 4 N = 5

= 2 92.11 92.32 92.19 90.85 90.31
= 3 95.87 97.08 97.15 97.09 97.11
= 4 95.87 97.06 97.15 96.84 96.44

N = 6 N = 7 N = 8 N = 9 N = 10

= 2 89.65 89.15 88.71 85.15 81.78
= 3 96.96 96.94 96.92 96.67 95.67
= 4 95.86 92.89 87.73 50.36 −529.06
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Fig. 7. Input–output dat

iener–Laguerre model can be seen to better model the nonlinear
ain compared to the linear Laguerre model.

.5. Model predictive control design

The linear model predictive control scheme is simulated using
he “mpctool” in the MPC toolbox of MATLAB, and the linear
aguerre model identified in Section 4.3 is used for prediction.

Saturation constraints in the manipulated variables are imposed
o take into account the minimum/maximum aperture of the valve
egulating the base flow rate. A lower limit of 0 ml/s and an upper
imit of 30 ml/s are chosen for this variable. The tuning parame-
ers that have significant effects on both linear and nonlinear MPC

erformance are the prediction horizon, control horizon, sampling

nterval and penalty weighting matrices. The parameters used in
he design of the MPC controller are tuned as follows:

ig. 8. True and estimated output of Wiener–Laguerre model (validation data).
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onlinear identification.

1. The prediction horizon was set to 8 as a result of using different
levels and comparing control performances.

. A control horizon of two samples was found to provide a good
control performance.

. The weighting Q associated with the error from set point was
selected two times greater than the weighting S associated with
the input signal changes. Tuning parameters for linear MPC are
shown in Table 4.

In Fig. 9, the simulation result with the MPC algorithm based
n the linear Laguerre model identified in Section 4.3 is compared
ith the MPC based on a linear state-space model (identified using

he N4SID algorithm) proposed in Ref. [20]. Also, the corresponding
ontrol signals are plotted in Fig. 10. It can be observed that the MPC
ased on the Laguerre model performs better than that based on
he state-space model, when the operating region is far from the
ominal operating conditions (pH 7).

.6. Nonlinear model predictive control design

The NMPC scheme introduced in Section 3 is simulated using
he Wiener–Laguerre model identified in Section 4.4. The optimiza-
ion problem is solved using “fmincon” function in the optimization

oolbox of MATLAB. Tuning parameters of the controller are shown
n Table 5. The results are shown in Figs. 11 and 12, where they are
ompared with the results obtained from an MPC controller based
n a Wiener model proposed in Ref. [20] and MPC controller of
ection 4.5.

able 4
uning parameters of MPC controller

= 100
= 0
= 50
= 8
= 2

L = 0
u = 30
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Fig. 9. The performance of the controller using Laguerre and state-space models.
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Fig. 10. Manipulat

Simulation results show that, for the considered application, the
iener–Laguerre MPC performs slightly better than the MPC based

n the linear Laguerre model, but it performs much better than that
orresponding to the Wiener model presented in Ref. [20].
Fig. 12 shows the control efforts for both controllers, which are
cceptable in a range from 0 up to 30, and Fig. 13 shows the CPU
ime. The maximum CPU time is in first seconds and never exceeds
he system sample time (10 s). This fact ensures that in each sample

able 5
uning parameters of NMPC controller

= 100
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L = 0
u = 30
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iable u1 for Fig. 9.

ime, the NMPC controller has enough time for its calculations and
he optimization is performed in a reasonable time.

For the sake of comparison, Table 6 shows sum square error (SSE)
n set point tracking for nonlinear MPC based on Wiener–Laguerre

odel and MPC based on Wiener model as well as Laguerre model.

s can be seen, the NMPC based on Wiener–Laguerre shows better
erformance compared to the MPC based on Wiener model but is
lightly better than MPC based on Laguerre model.

able 6
SE criteria for applied controllers in set-point tracking

ontroller SSE

MPC (Wiener–Laguerre) 157.1854
PC (Wiener) 429.9803
PC (Laguerre) 199.671
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Fig. 11. NMPC based on Wiener–Laguerre in comparison with MPC based on Laguerre and Wiener models.

Fig. 12. Manipulated var

Fig. 13. CPU time.
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. Conclusions

Wiener models are frequently used for identification of non-
inear processes in nonlinear model predictive control systems.
aguerre filters are frequently used as the linear part of Wiener
odels resulting in the so-called Wiener–Laguerre model. This
odel structure was used for the identification of a highly non-

inear chemical process with the aim of being used in an NMPC
ontroller. Various orders of the Laguerre network, as well as var-
ous polynomial orders were tested, and results are summarized
n Table 3. Based on these results, the order of Laguerre network
nd also the polynomial order were chosen so that a good trade-
ff between the number of parameters and an acceptable VAF was
btained.
To show how Laguerre filters improve the modeling capability
nd performance of MPC controllers, the performance of an NMPC
ontroller based on this Wiener–Laguerre model is compared with
he performance of an MPC controller based on a Wiener model
20]. Simulation results show that the performance of the pro-
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