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ABSTRACT

In this paper, Laguerre filters and simple polynomials are used respectively as linear and nonlinear parts
of a Wiener structure. The obtained model structure is the so-called Wiener-Laguerre model. This model
is used to evaluate identification of a pH neutralization process. Then the model is used in a nonlinear
model predictive control framework based on the sequential quadratic programming (SQP) algorithm.
Various orders of Laguerre filters and nonlinear polynomials are tested, and the results are compared
for the validation of these models. Validation results for various orders suggest that in order to have a
good trade-off between simplicity of the model and its corresponding fitness, a second order nonlinear
polynomial along with two Laguerre filters may be selected. The fitness of this model according to variance
account for (VAF) criterion is 92.32%, which is completely acceptable for nonlinear model predictive
control applications. Then the identified Wiener-Laguerre model is used for nonlinear model predictive
control and the results are compared with model predictive control in which just Wiener model was
used for identification. It is shown that the use of the Wiener-Laguerre structure improves the quality of
modeling together with the rate of convergence of SQP in a reasonable time. Furthermore, these results
are also compared with the performance of a linear model predictive controller based on Laguerre model

to provide a fair comparison between linear and nonlinear systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Model predictive control (MPC) is one of the most successful
controllers in process industries. MPC describes a class of com-
puter control algorithms that control the future behavior of a plant
through the use of an explicit process model [1]. Therefore, the core
of the MPC algorithm is a dynamic model. Until recently, indus-
trial applications of MPC have relied on linear dynamic models
even though most processes are nonlinear. MPC based on linear
models are acceptable when the process operates at a single set
point and the primary use of the controller is the rejection of dis-
turbances. Many chemical processes, however, do not operate at a
single set point, and they are often required to operate at different
set points depending on the grade of the product to be produced.
Because these processes make transitions over the nonlinearity of
the system, linear MPC often results in poor control performance.
To properly control these processes, a nonlinear model is needed in
the MPC algorithm. Process industries need predictive controllers
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that are low cost, easy to setup, and account for plant nonlinear-
ity as well as modeling uncertainties. Therefore, it is necessary to
obtain a suitable nonlinear modeling technique that can be easily
used in a nonlinear MPC framework.

Selection of a suitable structure of a nonlinear model to rep-
resent system dynamics is a crucial step in the development
of a nonlinear MPC (NMPC) scheme. A number of researchers
and commercial companies have developed nonlinear models
using a variety of technologies, including first-principle [2] and
empirical approaches (i.e., nonlinear black-box models) [3-5]. The
first-principle models are valid globally and can predict system
dynamics over the entire operating range. However, development
of a reliable first-principle model is a difficult and time-consuming
task. On the other hand, the nonlinear black-box models have
certain advantages over the first-principle models in terms of
development time and efforts. Thus, from a practical viewpoint,
development of an NMPC scheme based on a nonlinear black-box
model is a more attractive choice.

In the development of a nonlinear black-box model, selection
of a suitable model structure that can capture nonlinear dynam-
ics over a wide operating range is not easy [1]. Different black-box
model structures are nonlinear autoregressive with exogenous
inputs (NARX) models [3], Volterra series expansion models and
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block oriented models (Hammerstein and Wiener structures) [6],
and artificial neural networks (ANN) [5]. The determination of
model order and model structure of a general NARX model (i.e.
which terms are important and cannot be ignored) is a difficult
task [1].

Volterra series models can be used to model a wide class of
nonlinear systems. However, these models are non-parsimonious
in parameters. Su and McAvoy [5] showed that recurrent neural
networks (RNN) are better suited for the development of NMPC
schemes. These models have output error structure and generate
better long-range predictions than feed forward neural networks
(FNN) that have been widely employed in process control applica-
tions. Development of RNN models is, however, considerably more
difficult than development of FNN models. Therefore, it is neces-
sary to evolve a scheme for the development of a black-box model
in which the model structure can be selected relatively easily and
the resulting model is valid over a wide operating range.

Block oriented models such as Wiener models are well-known
in NMPC because of their simplicity and capability in modeling
nonlinear systems, specially those that have linear dynamic and
nonlinear output mapping. Wiener models have the capability of
approximating, with arbitrary accuracy, any fading memory non-
linear time invariant system [7], and they have been successfully
used to model several nonlinear systems encountered in the pro-
cess industry, such as distillation columns [8] and pH processes
[9].

The linear convolution type models have been widely used in
MPC implementation as these models do not require model order
and time delay to be specified, and modeling of MIMO systems is
considerably easy using this representation [10]. A linear black-box
modeling technique that has received increasing attention in the
pastdecade is the Laguerre Series approximation [11,12]. ALaguerre
series model can be looked upon as a compact representation of
these convolution type models.

Advantages of the linear Laguerre model can be summarized as
follows:

1. Laguerre models do not need any explicit knowledge about sys-
tem time constant and time delay for model development.

2. Unlike the convolution type models that require large number of
coefficients, a good approximation can be obtained with a small
number of model coefficients for asymptotically stable systems
due to orthogonality property of Laguerre polynomials.

3. The estimates of the Laguerre coefficients are unbiased even for
a truncated series.

The use of such orthonormal filters in combination with a mem-
oryless nonlinear map referred to hereafter as a Wiener-Laguerre
model was originally proposed by Wiener [13].

The Wiener-Laguerre model can be looked upon as a repre-
sentation of the Volterra series model that is parsimonious in
parameters. Dumont et al. [14] has used a model of this type for
developing an adaptive predictive control scheme for controlling
SISO nonlinear systems. Sentoni et al. [15] used ANNSs for construct-
ing a nonlinear state output map. Saha et al. [13] used quadratic
polynomials as well as ANN for constructing a nonlinear output
map and used these models in nonlinear MPC formulations. The
output of the Laguerre-polynomial model compares quite well with
the output of pH neutralization process in the training data set;
however, this model completely fails to predict the plant behavior
when the validation data set is used [13].

In this paper, a nonlinear pH process is identified and con-
trolled in its full range operating conditions that may happen in
real applications. A Wiener-Laguerre structure is selected for iden-
tification with polynomial nonlinearity. The identification test is

designed based on a GMN [16] signal, which is recommended for
identification of nonlinear processes in industries. In order to keep
the model as simple as possible, and also efficient for nonlinear
model predictive control designs, different degrees of Laguerre
filter and polynomial orders are used and compared. These are
chosen, based on simulation results, in a trade-off between sim-
plicity of the model and its corresponding fitness. Based on this
model, a nonlinear model predictive controller is designed for a
proper operation of the pH process in different set points, and
the results are compared with a linear model predictive controller
based on alinear Laguerre model. The performance of the controller
based on the identified Wiener-Laguerre model shows that this
model presents better prediction capabilities in comparison with
the identified linear Laguerre model. Moreover, the MPC based on
the Wiener-Laguerre model outperforms the MPC based on the
Wiener model, particularly when the system is operating away
from the nominal operating conditions.

This paper is organized in four sections. After this intro-
duction, Laguerre filter networks and identification of nonlinear
Wiener-Laguerre models are discussed in Section 2. This section is
followed by the formulation of NMPC in Section 3, and a simulation
study on pH neutralization is discussed in Section 4. Conclusions
are summarized in Section 5.

2. Identification of Wiener-Laguerre models

Let us consider a SISO linear system, modeled by a Laguerre filter
network and represented as follows:

N
9m—<§}mw>mn (1)

i=1
where
i—1
un=¢ufﬂmgfﬂ%— 2)
zZ—da

Here L;(z) denotes the ith order Laguerre filter, N the number of
Laguerre filters used for model development, a (—1<a<1) the
Laguerre filter parameter, Ts the sampling interval, y(z) the model
output, and u(z) is the manipulated input.

Defining the state vector as

L(k) = [L(k), Ly(k), ..., In(k)]T (3)

where [;(k) represents the output from ith order Laguerre filter at
kth sampling instant to the input u(k), a discrete state-space realiza-
tion of the Laguerre filter network can be obtained as follows[12]:

Lk + 1) = ®(a)L(k) + I'(a)u(k) (4)

where u(k) is the system input, @(a) is an N x N lower triangular
matrix defined by

a 0 0 00
(1-a?) a 0 00

P(a)= —a(1 —a?) (1-a?) a 00 (5)
e 0
(—DNaV-2(1 —a®) (=) Ta¥N-3(1 - a?) ... ... a

and I'(a) is an N dimensional vector as follows:

I(a)= [\/(1—a2)Ts, —a/A—a)T, ..., ()N \/(1—(12)15}T (6)

For the linear model given by (1), the output can be expressed
as the weighted sum of the states by

(k) = CTL(k) (7)
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where elements of C are Laguerre filter coefficients, that is
C=[ci.co...enl' (8)

For developing a Wiener-Laguerre SISO nonlinear model, a non-
linear state-output map can be constructed so that the model
output is represented as

Yk) = w[x(k)] (9)

where ¥(-): RN — R is a memoryless nonlinear function.

Here for simplicity of the model the nonlinear map (-) is
selected as a polynomial function of the elements of state vec-
tor. The resulting SISO symmetric Wiener-Laguerre model can be
represented by

L(k + 1) = ®(a)L(k) + I'(a) u(k) (10)
N N N
) = ho+ Y hilik)+ > Y “hylik)li(k)
i=1 i=1 j=i
N N N N
oot ZZ . ZZhgmkmli(k)lj(k) L (Oa(k)  (11)
i=1 j=i k=r m=k

The key step in developing the Laguerre part of this model is to
estimate the Laguerre filter parameter a, and select the number of
Laguerre networks N. The step response data can be used to gener-
ate a meaningful initial guess for the filter parameter a. If T is the
system time constant, the discrete pole of the Laguerre filter can be
obtained as

a=e /T (12)

We have a strong preference for a pre-chosen real pole (i.e.
Laguerre filter parameter) rather than obtaining it by optimization
since it improves the speed and accuracy of the estimation algo-
rithm. In exchange, this choice can lead to a slightly larger number
of Laguerre filters required to model, for instance, under-damped
second order dynamics.

The number of Laguerre filters and Volterra kernels N was cho-
sen so that the output of the system and that of the model were
best fitted according to the variance account for (VAF) criterion:

varfy — j}

VAF = max {1 -
var{y}

,0} x 100% (13)
In(13)y = {yk}’,:’il denotes the real output sequence, y = {f/k}l,:]il
denotes the model output sequence, and var{-} denotes the vari-

ance of a quasi-stationary signal.
From (11) the output can be written as

(k) = H (k) + (k) (14)
where (k) is the equation error and
H=1lho, h1, ..., hg]". (15)

In (15), index R is calculated for a symmetric P-order Volterra
filter by

P
3 N+i-1
R_Z< A ) (16)
Besides, the regression vector ¢(k) is defined by

o(k) = [11;,.

After determining the structure of the proposed model, identi-
fication is performed using the least squares criterion.

T
e Blhl, B B L, B I (17)

3. Nonlinear model predictive formulation

In a typical MPC formulation, an explicit dynamic model is used
at each sampling instant for predicting the future behavior of the
plant over a finite number of future time steps, say P, which is called
the prediction horizon. A set of M (called the control horizon) future
manipulated input moves, u(k/k), u(k+1/k), ..., u(k+ M—1/k), are
determined by optimization with the objective of optimizing the
future behavior of plant while taking into consideration the oper-
ating constraints.

Thus, given a sequence of future control moves, i.e., u(k/k),
u(k+1/k), ..., u(k+M—1/k), the P step ahead open loop output
prediction can be written as follows:

L(k+j+ 1| k) = P(a)L(k +j| k) + T(a)u(k+j| k), j=1,...,P—1

(18)
Ik +j| k) =WIL(k+j| k)] (19)
where
u(k+M|k)=...=u(k+P—1|k)=u(k+M—1) (20)

In order to take into account the plant model mismatch and
unmeasured slightly varying disturbances, we assume that the dis-
crepancy between the model output and the process output is due
to additive step disturbances in the output that persist over the
prediction horizon. Thus, similar to the linear dynamic matrix con-
trol scheme, a mismatch correction term is incorporated in the
prediction model as follows:

yelk+j|k) =9k +j| k) +d(k| k), j=1,2,...,P (21)
d(k| k)= y(k) = 3(k| k- 1) (22)

where y(k) represents the measured plant output at the kth instant,
and y(k/k — 1) represents the model output at the kth instant using
input sequence up to time k — 1. Although simplistic, this type of
unmeasured disturbance model approximates slowly varying dis-
turbances and provides robustness to modeling error [17].

Now, given the future set point trajectory {ysp(k+j/k);j=1,2,. ..,
P} the controller design problem can be formulated as follows:

P M
. . 2 . 2

j=1
M
+> | Autk +j] 1<)||§U) 23)
j=1
subject to
ub <u(k+jlk)<ut, j=1,...,M-1. (24)
where
E(k+]| k) = ysp(k +j| k) = ye(k + j| k) (25)
Au(k+j] k) =u(k+j| k) - u(k+j— 1| k) (26)

In (23), Q(j), R(j) and S(j) are positive semi-definite diagonal
weighting matrices, and [|x||; = vxTZx denotes the weighted 2-
norm of vector x. The weighting matrices Q(j), R(j) and S(j), as well
as the prediction horizon P and the control horizon M, are design
parameters that must be tuned to provide the controller with a
satisfactory performance.

The resulting nonlinear programming problem can be solved
using any standard optimization technique such as successive
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Fig. 1. Schematic representation of the pH neutralization process [18].

quadratic programming (SQP). The controller is implemented in
a moving horizon framework, i.e., only u(k/k) is implemented at
each sampling instant, and the optimization is repeated at each
sampling instant based on the updated information from the plant.
In this work, the constrained optimization problem (23), resulting
the optimal input u(k/k) at every sampling instant, is solved using
“fmincon” function in MATLAB optimization toolbox.

4. Simulation results
In this section, the proposed nonlinear modeling and predic-

tive control are evaluated in simulation studies for the physical
nonlinear model of a UCSB pH neutralization process [18].

4.1. pH neutralization process [18]

The considered pH neutralization process consists of an acid
(HNO3) stream, a base (NaOH) stream, and a buffer (NaHCO3)

Table 1

Nominal operating conditions

u3 =16.60 ml/s up; =0.55ml/s
u; =15.55ml/s V=2900 ml

W,1 =—-3.05 x 10~ mol
W,3 =3 x 1073 mol
Wy =5 x 107> mol

Wi =-3 x 1072 mol
W, =-4.32 x 10~4 mol
Wiy =3 x 1072 mol

Wp3 =0 mol W, =5.28 x 104 mol
pki=6.35 pk, =10.25
y=170

stream that are mixed in a constant-volume (V) stirring tank. The
process is schematically depicted in Fig. 1 [18].

The inputs to the system are the base (volumetric) flow rate (uy),
the buffer flow rate (u5), and the acid flow rate (u3), while the out-
put (y) is the pH of the effluent solution. The acid flow rate (u3),
as well as the volume (V) of the tank are assumed to be constant.
Usually, the objective is to control the pH of the effluent solution
by manipulating the base flow rate, despite the variations of the
unmeasured buffer flow rate, which can be considered as unmea-
sured disturbance.

The model is highly nonlinear due to the implicit output equa-
tion, known as the titration curve given in (33). The dynamic model
for the reaction invariants of the effluent solution (W,, W},) in state-
space form is given by

X = f(x) + g + p(x)uz (27)

h(x,y)= 0 (28)

xS, %] = [Wa, W' (29)

T

£00 = | T Wiz —x1), P (Whs —x2)] (30)
T

800 = [ (War —31). (Wor —2)] (31)
T

P00 = [ (War = x1). 3 (Wo2 — ) (32)

1+2x 10k
+ 107y L1077 Pk2

h(x,y)=x +10" — 107 +X27 (33)

Step Response of Plant for 1% change
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Fig. 2. Step responses of pH process.
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Fig. 3. GBN test signal.

Here, parameters pk; and pk, are the first and second disassoci-
ation constants of the weak acid H,CO3. The nominal operating
conditions of the system are given in Table 1 for the sake of com-
pleteness.

4.2. Pre-test and identification test design

In order to develop a Laguerre model we should guess the filter
parameter ‘a’ at first. Therefore, we need to obtain a rough estimate
of dominant process time constants through step tests. In a step
test, the processis operating in open-loop without the model-based
controller, each input is stepped separately, and step responses are
recorded. The maximum step size can be determined according to
process operation experience, and the step length should be longer
than the settling time of the process. Step tests of pH neutraliza-
tion process for one step up and one-step down with different step
sizes are shown in Fig. 2. Asitis clear from this figure, pH neutraliza-
tion process as a nonlinear system shows different time constants
between 100 and 160 s for step sizes up to +10%.

Generalized binary noise (GBN) [16] around the nominal value
of the base flow rate is used as the exciting signal for identification
of the linear Laguerre model. Here, linear identification is carried
outaround +5% of the base flow rate (u; = 15.55 ml/s) and switching
time is calculated as

T
Tsw = gs (34)
where
Ts = 0-98Tsettling (35)

and Teling is the settling time of the system which is 160s here
according to the step response of +5%. The GBN signal designed for
identification of linear model is shown in Fig. 3.

Traditionally, pseudo-random binary sequences (PRBS) are used
as the inputs to a system in order to produce representative sets of
data to be analyzed. In theory, a PRBS excites the range of dynamics
presentin a system so that a dynamic model can be produced which
contains these dynamics. This is not sufficient, however, for fitting

Input

35 : . 1
30 |
25 H
20 H
15

10

base flow rate (ml/s)

-5 L L 1 1 I

1

T

500 1000

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Time (sec)

Fig. 4. GMN test signal.
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a Wiener model. Since these models have nonlinear gains, an input
signal must be used which also demonstrates the response of the
system to a range of amplitude changes. A signal which satisfies this
criterion is a GMN or a modified PRBS signal which, in addition to
random frequency, also exhibits random amplitude changes. Gen-
eralized multi level noise (GMN) is a multilevel generalization of
GBN [16]. Here a GMN is used as a test signal for the identification
of a Wiener-Laguerre model. The switching time is designed as for
the GBN test signal. Amplitude distribution is chosen so that it has
10 levels around the nominal value of the base flow rate to cover
the whole operating region (between 0 and 30). These levels play
an important role in the identification of Wiener-Laguerre model.
Fig. 4 shows the GMN test signal.

4.3. Linear identification

The nonlinear analytical model (27) and (28) of the process is
used to generate input-output data for the identification of a linear
Laguerre model and also a Wiener-Laguerre model of the process.

At first, a linear Laguerre model is considered, and a gener-
alized binary noise around the nominal value of the base flow
rate (Fig. 3) is used as the exciting signal for identification of the
linear Laguerre model. Buffer flow rate is kept constant at its nom-
inal value (0.55ml/s), and the acid flow rate is kept constant at
16.60 ml/s. The output of the system was corrupted with an addi-
tive Gaussian white noise with zero mean and standard deviation
0 =0.001 (S/N ratio = 10), in order to simulate a more realistic situ-
ation when measurement noise is present. The input-output data
are plotted in Fig. 5. Output data has 6000 samples and is gathered
with 10-s sampling time. The first 4500 samples are used for iden-
tification of the model and the rest of 1500 samples for validation
purpose. Different orders of linear Laguerre filters are tested and
the best one is selected according to the VAF criterion. Results are
summarized in Table 2 [19].

It shows that when N increases, the fitness of the identified
model increases too. However, only increasing N from N=1 up to
2 improved the performance of the MPC controller, and this per-
formance almost saturated for N > 2. Therefore N=2 was chosen in
a trade-off between compactness of the identified model and its
corresponding fitness.

The result of validation for the estimated Laguerre model using
validation data is shown in Fig. 6. The fitting is 94.32% according
to the VAF criteria. Fig. 6 shows that a linear Laguerre model can

Input

~ 16.5 T ].J T T
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E
5 16
&
z 155
<]
=
g 15
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145 1 1 1 1 1

1000 2000 3000 4000 5000 6000
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8 T T T T T

75
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&

o7

B_R 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time(sec)

Fig. 5. Input-output data for linear identification.

Table 2
Comparison of identified linear models for different orders of Laguerre filters (noisy
data)

N=1 N=2 N=3 N=4 N=5
VAF 87.85 94.32 95.12 95.68 96.16
N=6 N=7 N=8 N=9 N=10
VAF 96.78 97.07 97.24 97.26 97.35
8
Plant Qutput
78 | sssssmeeas Model Output i
76+t { (
74t
oy
&
- 7.2+
Tr
*ol U\ \
6.6 . %
500 1000 1500
Time(sec)

Fig. 6. True and estimated output for linear Laguerre model (validation data).

capture the dynamic of the process but it cannot model its nonlinear
gain. So adding a nonlinear mapping as the nonlinear gain seems
to be necessary to improve the model accuracy.

4.4. Nonlinear identification

In this case the excitement signal was a generalized multilevel
noise (GMN)designed in Section 4.2. Again, buffer and acid flow rate
were fixed at their nominal values. In order to simulate a more real-
istic situation of having measurement noise, a Gaussian white noise
with zero mean and standard deviation ¢=0.001 (S/N ratio=10)
was added to the output of the system. The input-output data used
for nonlinear identification are shown in Fig. 7. Output data has
6000 samples and are gathered with 10-s sampling time. Differ-
ent orders of nonlinear mapping polynomial (P) and Laguerre filter
(N) were tested and the results are summarized in Table 3. Accord-
ing to Table 3, for a simple choice of P=2, the highest VAF value is
obtained for N=2. In this case, while keeping the model simple, we
get enough accuracy for designing a nonlinear controller based on
this model.

The result of validation for the estimated Wiener-Laguerre
model is depicted in Fig. 8. The fitting according to the VAF cri-
teria is 92.32%. When compared to the Laguerre model in Fig. 6, the

Table 3
Comparison of identified Wiener-Laguerre model for various orders of polynomial
(P) and Laguerre filters (N)

N=1 N=2 N=3 N=4 N=5
P=2 92.11 92.32 92.19 90.85 90.31
P=3 95.87 97.08 97.15 97.09 97.11
P=4 95.87 97.06 97.15 96.84 96.44

N=6 N=7 N=8 N=9 N=10
P=2 89.65 89.15 88.71 85.15 81.78
P=3 96.96 96.94 96.92 96.67 95.67
P=4 95.86 92.89 87.73 50.36 —529.06
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Fig. 7. Input-output data for nonlinear identification.

Wiener-Laguerre model can be seen to better model the nonlinear
gain compared to the linear Laguerre model.

4.5. Model predictive control design

The linear model predictive control scheme is simulated using
the “mpctool” in the MPC toolbox of MATLAB, and the linear
Laguerre model identified in Section 4.3 is used for prediction.

Saturation constraints in the manipulated variables are imposed
to take into account the minimum/maximum aperture of the valve
regulating the base flow rate. A lower limit of 0 ml/s and an upper
limit of 30ml/s are chosen for this variable. The tuning parame-
ters that have significant effects on both linear and nonlinear MPC
performance are the prediction horizon, control horizon, sampling
interval and penalty weighting matrices. The parameters used in
the design of the MPC controller are tuned as follows:

14 T

Plant Output
wanesmeens Madel Output

y(pH)

0 500 1000 1500
Time(sec)

Fig. 8. True and estimated output of Wiener-Laguerre model (validation data).

1. The prediction horizon was set to 8 as a result of using different
levels and comparing control performances.

2. A control horizon of two samples was found to provide a good
control performance.

3. The weighting Q associated with the error from set point was
selected two times greater than the weighting S associated with
the input signal changes. Tuning parameters for linear MPC are
shown in Table 4.

In Fig. 9, the simulation result with the MPC algorithm based
on the linear Laguerre model identified in Section 4.3 is compared
with the MPC based on a linear state-space model (identified using
the N4SID algorithm) proposed in Ref. [20]. Also, the corresponding
control signals are plotted in Fig. 10. It can be observed that the MPC
based on the Laguerre model performs better than that based on
the state-space model, when the operating region is far from the
nominal operating conditions (pH 7).

4.6. Nonlinear model predictive control design

The NMPC scheme introduced in Section 3 is simulated using
the Wiener-Laguerre model identified in Section 4.4. The optimiza-
tion problem is solved using “fmincon” function in the optimization
toolbox of MATLAB. Tuning parameters of the controller are shown
in Table 5. The results are shown in Figs. 11 and 12, where they are
compared with the results obtained from an MPC controller based
on a Wiener model proposed in Ref. [20] and MPC controller of
Section 4.5.

Table 4
Tuning parameters of MPC controller

Q=100
R=0
S=50
P=8
M=2
ult=0
u*=30
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Fig. 10. Manipulated variable u; for Fig. 9.

Simulation results show that, for the considered application, the
Wiener-Laguerre MPC performs slightly better than the MPC based
on the linear Laguerre model, but it performs much better than that
corresponding to the Wiener model presented in Ref. [20].

Fig. 12 shows the control efforts for both controllers, which are
acceptable in a range from 0 up to 30, and Fig. 13 shows the CPU
time. The maximum CPU time is in first seconds and never exceeds
the system sample time (10 s). This fact ensures that in each sample

Table 5
Tuning parameters of NMPC controller

time, the NMPC controller has enough time for its calculations and
the optimization is performed in a reasonable time.

For the sake of comparison, Table 6 shows sum square error (SSE)
in set point tracking for nonlinear MPC based on Wiener-Laguerre
model and MPC based on Wiener model as well as Laguerre model.
As can be seen, the NMPC based on Wiener-Laguerre shows better
performance compared to the MPC based on Wiener model but is
slightly better than MPC based on Laguerre model.

Table 6

SSE criteria for applied controllers in set-point tracking
Controller SSE
NMPC (Wiener-Laguerre) 157.1854
MPC (Wiener) 429.9803
MPC (Laguerre) 199.671
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CPU Time 5. Conclusions

Wiener models are frequently used for identification of non-
linear processes in nonlinear model predictive control systems.
Laguerre filters are frequently used as the linear part of Wiener
models resulting in the so-called Wiener-Laguerre model. This
model structure was used for the identification of a highly non-
linear chemical process with the aim of being used in an NMPC

controller. Various orders of the Laguerre network, as well as var-
w b ious polynomial orders were tested, and results are summarized
in Table 3. Based on these results, the order of Laguerre network
and also the polynomial order were chosen so that a good trade-
off between the number of parameters and an acceptable VAF was

] obtained.
To show how Laguerre filters improve the modeling capability
B 90F Bbo 500 40D B00 200 700 800 Hog 164D and performance of MPC controllers, the performance of an NMPC
Time (sec) controller based on this Wiener-Laguerre model is compared with

the performance of an MPC controller based on a Wiener model
Fig. 13. CPU time. [20]. Simulation results show that the performance of the pro-
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posed NMPC controller is slightly better than the linear one but
it obviously outperforms the Wiener based MPC.
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